skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Andy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 16, 2026
  2. Quantum many-body scar states are highly excited eigenstates of many-body systems that exhibit atypical entanglement and correlation properties relative to typical eigenstates at the same energy density. Scar states also give rise to infinitely long-lived coherent dynamics when the system is prepared in a special initial state having finite overlap with them. Many models with exact scar states have been constructed, but the fate of scarred eigenstates and dynamics when these models are perturbed is difficult to study with classical computational techniques. In this work, we propose state preparation protocols that enable the use of quantum computers to study this question. We present protocols both for individual scar states in a particular model, as well as superpositions of them that give rise to coherent dynamics. For superpositions of scar states, we present both a system-size-linear depth unitary and a finite-depth nonunitary state preparation protocol, the latter of which uses measurement and postselection to reduce the circuit depth. For individual scarred eigenstates, we formulate an exact state preparation approach based on matrix product states that yields quasipolynomial-depth circuits, as well as a variational approach with a polynomial-depth ansatz circuit. We also provide proof of principle state-preparation demonstrations on superconducting quantum hardware. 
    more » « less
  3. null (Ed.)
    Card-not-present credit card fraud costs businesses billions of dollars a year. In this paper, we present Boxer, a mobile SDK and server that enables apps to combat card-not-present fraud by scanning cards and verifying that they are genuine. Boxer analyzes the images from these scans, looking for telltale signs of attacks, and introduces a novel abstraction on top of modern security hardware for complementary protection. Currently, 323 apps have integrated Boxer, and tens of them have deployed it to production, including some large, popular, and international apps, resulting in Boxer scanning over 10 million real cards already. Our evaluation of Boxer from one of these deployments shows ten cases of real attacks that our novel hardware-based abstraction detects. Additionally, from the same deployment, without letting in any fraud, Boxer’s card scanning recovers 89% of the good users whom the app would have blocked. In another evaluation of Boxer, we run our image analysis models against images from real users and show an accuracy of 96% and 100% on the two models that we use. 
    more » « less